Potrebujeme váš súhlas na využitie jednotlivých dát, aby sa vám okrem iného mohli ukazovať informácie týkajúce sa vašich záujmov. Súhlas udelíte kliknutím na tlačidlo „OK“.
Standard Test Method for Reporting Photovoltaic Non-Concentrator System Performance
Automaticky preložený názov:
Štandardná skúšobná metóda pre Reporting Fotovoltaické Non-koncentrátor výkon systému
NORMA vydaná dňa 1.9.2013
Označenie normy: ASTM E2848-13
Poznámka: NEPLATNÁ
Dátum vydania normy: 1.9.2013
Kód tovaru: NS-46146
Počet strán: 11
Približná hmotnosť: 33 g (0.07 libier)
Krajina: Americká technická norma
Kategória: Technické normy ASTM
Keywords:
performance, photovoltaics, reporting, systems, ICS Number Code 27.160 (Solar energy engineering)
Significance and Use | ||||||||||||||||||||||||||||||
5.1 Because there are a number of choices in this test method that depend on different applications and system configurations, it is the responsibility of the user of this test method to specify the details and protocol of an individual system power measurement prior to the beginning of a measurement. 5.2 Unlike device-level measurements that report performance at a fixed device temperature of 25°C, such as Test Methods E1036, this test method uses regression to a reference ambient air temperature. 5.2.1 System power values calculated using this test method are therefore much more indicative of the power a system actually produces compared with reporting performance at a relatively cold device temperature such as 25°C. 5.2.2 Using ambient temperature reduces the complexity of the data acquisition and analysis by avoiding the issues associated with defining and measuring the device temperature of an entire photovoltaic system. 5.2.3 The user of this test method must select the time period over which system data are collected, and the averaging interval for the data collection within the constraints of 5.2.4 It is assumed that the system performance does not degrade or change during the data collection time period. This assumption influences the selection of the data collection period because system performance can have seasonal variations. 5.3 The irradiance shall be measured in the plane of the modules under test. If multiple planes exist (particularly in the case of rolling terrain), then the plane or planes in which irradiance measurement will occur must be reported with the test results. In the case where this test method is to be used for acceptance testing of a photovoltaic system or reporting of photovoltaic system performance for contractual purposes, the plane or planes in which irradiance measurement will occur must be agreed upon by the parties to the test prior to the start of the test. 5.3.1 The linear regression results
will be most reliable when the measured irradiance, ambient
temperature, and wind speed data during the data collection period
are distributed around the reporting conditions. When this is not
the case, the reported power will be an extrapolation to the
reporting conditions.
5.4 Accumulation of dirt (soiling) on the photovoltaic modules can have a significant impact on the system rating. The user of this test may want to eliminate or quantify the level of soiling on the modules prior to conducting the test. 5.5 Repeated regression calculations on the same system to the same RC and using the same type of irradiance measurement device over successive data collection periods can be used to monitor performance changes as a function of time. 5.6 Capacity determinations are power measurements and are adequate to demonstrate system completeness. However, a single capacity measurement does not provide sufficient information to project the energy generation potential of the system over time. Factors that may affect energy generation over time include: module power degradation, inverter clipping and overloading, shading, backtracking, extreme orientations, and filtering criteria. |
||||||||||||||||||||||||||||||
1. Scope | ||||||||||||||||||||||||||||||
1.1 This test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. 1.2 This test method is used for the following purposes: 1.2.1 acceptance testing of newly installed photovoltaic systems, 1.2.2 reporting of dc or ac system performance, and 1.2.3 monitoring of photovoltaic system performance. 1.3 This test method should not be used for: 1.3.1 testing of individual photovoltaic modules for comparison to nameplate power ratings, 1.3.2 testing of individual photovoltaic modules or systems for comparison to other photovoltaic modules or systems, 1.3.3 testing of photovoltaic systems for the purpose of comparing the performance of photovoltaic systems located in different places. 1.4 In this test method, photovoltaic system power is reported with respect to a set of reporting conditions (RC) including: solar irradiance in the plane of the modules, ambient temperature, and wind speed (see Section 1.5 This test method assumes that the solar cell temperature is directly influenced by ambient temperature and wind speed; if not the regression results may be less meaningful. 1.6 The capacity measured according to this test method should not be used to make representations about the energy generation capabilities of the system. 1.7 This test method is not applicable to concentrator photovoltaic systems; as an alternative, Test Method E2527 should be considered for such systems. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. |
||||||||||||||||||||||||||||||
2. Referenced Documents | ||||||||||||||||||||||||||||||
|
Historická
1.11.2013
Historická
1.4.2009
Historická
1.12.2012
Historická
1.11.2013
Historická
1.6.2010
Historická
1.4.2009
Posledná aktualizácia: 2024-11-15 (Počet položiek: 2 210 820)
© Copyright 2024 NORMSERVIS s.r.o.