Potrebujeme váš súhlas na využitie jednotlivých dát, aby sa vám okrem iného mohli ukazovať informácie týkajúce sa vašich záujmov. Súhlas udelíte kliknutím na tlačidlo „OK“.
Standard Test Method for Rotary Wheel Testing (RWT) of Compacted Asphalt Mixtures
NORMA vydaná dňa 1.8.2021
Označenie normy: ASTM D8259/D8259M-21
Dátum vydania normy: 1.8.2021
Kód tovaru: NS-1033805
Počet strán: 12
Približná hmotnosť: 36 g (0.08 libier)
Krajina: Americká technická norma
Kategória: Technické normy ASTM
Keywords:
angle ?, asphalt concrete, creep slope, moisture susceptibility, rotary wheel tester, rutting, stripping infection point, stripping slope,
Significance and Use |
4.1?The test method is developed for determining the rutting and moisture susceptibility of asphalt mixtures. The rutting and moisture damage resistance can help differentiate mixtures whose service life might be compromised by permanent deformation or by moisture damage. The test method is valid for specimens that are tested at temperatures of 60 ? 0.5 ?C [140 ? 0.9 ?F]. Test specimen geometry is a diameter of 150 mm [5.9 in.] and a height of 115 ? 5 mm [4.5 ? 0.2 in.]. Specimens are prepared using a Superpave gyratory compactor. Note 9:?The quality of the results produced by this standard
are dependent on the competence of the personnel performing the
procedure and the capability, calibration, and maintenance of the
equipment used. Agencies that meet the criteria of Specification
D3666 are generally
considered capable of competent and objective testing, sampling,
inspection, etc. Users of this standard are cautioned that
compliance with Specification D3666 alone does not completely ensure
reliable results. Reliable results depend on many factors;
following the suggestions of Specification D3666 or some similar acceptable
guideline provides a means of evaluating and controlling some of
those factors.
|
1. Scope |
1.1?This test method describes a procedure for testing the rutting and moisture susceptibility of asphalt specimens using the Rotary Wheel Tester (RWT). Superpave Gyratory Compactor (SGC) specimens (Test Method D6925) are wrapped, conditioned, submerged in water, and confined between three metal wheels in continuous synchronized rotation with each wheel applying a fixed load around the periphery of the specimen. The system records the number of load cycles applied to the specimen, the deformation of the specimen (rut depth), the loading rate, the temperature of the water, and Sigma, which is an indication of specimen roundness. 1.2?The test method is used to determine the premature rutting susceptibility of asphalt mixtures by measuring rut depth as a function of number of load cycles throughout the test. 1.3?This test method also measures the potential for moisture damage effects because the specimens are submerged in temperature-controlled water during preconditioning and for the duration of the test. 1.4?The parameters of the test are shown in Table 1. See an example of the test parameters used in Appendix X1. Note 1:?This test uses a typical specimen produced by a
Superpave gyratory compactor.
Note 2:?The ruggedness study identified air void content as
the most influential factor evaluated and recommended a tolerance
of ?0.25 % to minimize the effect of air void content on the test
results. The precision study evaluated three asphalt mixtures with
specimen air void contents ranging from 2.87 % to 3.23 %, from 4.28
% to 4.64 %, and from 5.77 % to 6.19 %. Precision statements
covering the air void content ranges of 2.75 % to 4.75 % and 5.75 %
to 6.25 % can be found in Section 10. Lemke and Bahia (2019) found that an
asphalt mixture with 7 % air void content was more susceptible to
rutting than a mixture with 3 % air void content and that the test
results for the 7 % AV mixture did not differentiate between
control factors such as test temperature and mixture source like
the mixture with 3 % air void content did.
Note 3:?The University of Wisconsin at Madison Modified
Asphalt Research Center (2017) reported that the City of LA
selected the test temperature of 60 ?C [140 ?F] because
(Note 4:?The University of Wisconsin at Madison Modified
Asphalt Research Center (2017) reported that the City of LA
selected 6900 load cycles as the maximum load cycles because
initial observations from tests showed that most samples tested
showed their performance well before these values (6900 load cycles
and 6.0 mm [0.24 in.]) were attained ... while those that exhibited
low rut depth in the field and no moisture susceptibility showed
test result curves that behaved as asymptotes to their initial
creep slope until the maximum number of cycles (30 000 cycles) of
the machine was attained. 6900 load cycles was used in both the
ruggedness and precision work as well. The machine has an allowable
range of 300 to 30 000 load cycles.
Note 5:?The University of Wisconsin at Madison Modified
Asphalt Research Center (2017) reported that the City of LA
selected 6.0 mm [0.24 in.] as the maximum rut depth because initial
observations from tests showed that most samples tested showed
their performance well before these values (6900 load cycles and
6.0 mm [0.24 in.]) were attained ... while those that exhibited low
rut depth in the field and no moisture susceptibility showed test
result curves that behaved as asymptotes to their initial creep
slope until the maximum number of cycles (30 000 cycles) of the
machine was attained. 6.0 mm [0.24 in.] was used in both the
ruggedness and precision work as well.
Note 6:?The University of Wisconsin at Madison Modified
Asphalt Research Center (2017) reported that the City of LA
selected 70 CPM as the loading rate because that is what its RWT
was set at by the factory. 70 CPM was used in both the ruggedness
and precision work as well. The machine has an allowable range of
60 to 90 CPM.
Note 7:?The University of Wisconsin at Madison Modified
Asphalt Research Center (2017) reported that the City of LA
selected an applied load of 334 N [75 lb] because that is what its
RWT was set at by the factory. 334 N [75 lb] was used in both the
ruggedness and precision work as well. The machine has an allowable
range of 334 to 489 N [75 to 110 lb] in 22-N [5-lb] increments.
Applied loads of greater than 334 N [75 lb] are not recommended
based on experience.
1.5?Criteria for the evaluation and interpretation of test results shall be developed for local conditions and material characteristics. Appendix X1 shows an example of how test results are used and interpreted. 1.6?The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the test method. 1.7?UnitsThe values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.8?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
Chcete mať istotu, že používate len platné technické normy?
Ponúkame Vám riešenie, ktoré Vám zaistí mesačný prehľad o aktuálnosti noriem, ktoré používate.
Chcete vedieť viac informácií ? Pozrite sa na túto stránku.
Posledná aktualizácia: 2024-12-26 (Počet položiek: 2 217 217)
© Copyright 2024 NORMSERVIS s.r.o.