Potrebujeme váš súhlas na využitie jednotlivých dát, aby sa vám okrem iného mohli ukazovať informácie týkajúce sa vašich záujmov. Súhlas udelíte kliknutím na tlačidlo „OK“.
Standard Test Methods for Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques
Automaticky preložený názov:
Štandardné skúšobné metódy pre meranie energie a integrovanej prenosu náboja Vzhľadom k čiastočných výbojov (Corona) Použitie Bridge techniky
NORMA vydaná dňa 1.11.2013
Označenie normy: ASTM D3382-13
Poznámka: NEPLATNÁ
Dátum vydania normy: 1.11.2013
Kód tovaru: NS-23487
Počet strán: 8
Približná hmotnosť: 24 g (0.05 libier)
Krajina: Americká technická norma
Kategória: Technické normy ASTM
Keywords:
bridge circuits, bridge techniques, capacitance increase, charge-voltage-trace bridge, corona, discharge energy, discharge inception level, energy, harmonics, integrated charge transfer, internal discharges, ionizing voltage, loop trace, partial discharges, pseudoglow discharge, pulse discharge, pulseless-glow discharge, pulse measurements, solid insulating materials, surface discharge, transformer-ratio-arm bridge, ICS Number Code 17.220.20 (Measurement of electrical and magnetic quantities)
Significance and Use | ||||||||||||||||||
5.1 These test methods are useful in research and quality control for evaluating insulating materials and systems since they provide for the measurement of charge transfer and energy loss due to partial discharges(4) (5) (6). 5.2 Pulse measurements of partial discharges indicate the magnitude of individual discharges. However, if there are numerous discharges per cycle it is occasionally important to know their charge sum, since this sum can be related to the total volume of internal gas spaces that are discharging, if it is assumed that the gas cavities are simple capacitances in series with the capacitances of the solid dielectrics 5.3 Internal (cavity-type) discharges are mainly of the pulse (spark-type) with rapid rise times or the pseudoglow-type with long rise times, depending upon the discharge governing parameters existing within the cavity. If the rise times of the pseudoglow discharges are too long , they will evade detection by pulse detectors as covered in Test Method D1868. However, both the pseudoglow discharges irrespective of the length of their rise time as well as pulseless glow can be readily measured either by Method A or B of Test Methods D3382. 5.4 Pseudoglow discharges have been observed to occur in air, particularly when a partially conducting surface is involved. It is possible that such partially conducting surfaces will develop with polymers that are exposed to partial discharges for sufficiently long periods to accumulate acidic degradation products. Also in some applications, like turbogenerators, where a low molecular weight gas such as hydrogen is used as a coolant, it is possible that pseudoglow discharges will develop. |
||||||||||||||||||
1. Scope | ||||||||||||||||||
1.1 These test methods cover two bridge techniques for measuring the energy and integrated charge of pulse and pseudoglow partial discharges: 1.2 Test Method A makes use of capacitance and loss characteristics such as measured by the transformer ratio-arm bridge or the high-voltage Schering bridge (Test Methods D150). Test Method A can be used to obtain the integrated charge transfer and energy loss due to partial discharges in a dielectric from the measured increase in capacitance and tan δ with voltage. (See also IEEE 286 and IEEE 1434) 1.3 Test Method B makes use of a somewhat different bridge circuit, identified as a charge-voltage-trace (parallelogram) technique, which indicates directly on an oscilloscope the integrated charge transfer and the magnitude of the energy loss due to partial discharges. 1.4 Both test methods are intended to supplement the measurement and detection of pulse-type partial discharges as covered by Test Method D1868, by measuring the sum of both pulse and pseudoglow discharges per cycle in terms of their charge and energy. 1.5 This standard does not
purport to address all of the safety concerns, if any, associated
with its use. It is the responsibility of the user of this standard
to establish appropriate safety and health practices and determine
the applicability of regulatory limitations prior to use.
IEEE 1434 Guide to the Measurement of Partial
Discharges in Rotating Machinery IEEE 286 Recommended Practice for Measurement of
Power Factor and Power Factor Tip-up for Rotating Machine Stator
Coil Insulation Standard Test Method for Detection and
Measurement of Partial Discharge (Corona) Pulses in Evaluation of
Insulation Systems Standard Test Methods for AC Loss
Characteristics and Permittivity (Dielectric Constant) of Solid
Electrical Insulation Standard Terminology Relating to
Electrical Insulation AEIC T-24-380 Guide for Partial Discharge Procedure IEEE Standard C57.124 Recommended Practice for the Detection of
PD and the Measurement of Apparent Charge in Dry-Type
Transformers IEEE C57.113 Guide for PD Measurements in
Liquid-Filled Power Transformers AEIC CS5-87 Specifications for Thermoplastic and
Crosslinked Polyethylene Insulated Shielded Power Cables Rated 5
through 35 kV, 9th Edition, 1987 |
Posledná aktualizácia: 2024-12-22 (Počet položiek: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.