Potrebujeme váš súhlas na využitie jednotlivých dát, aby sa vám okrem iného mohli ukazovať informácie týkajúce sa vašich záujmov. Súhlas udelíte kliknutím na tlačidlo „OK“.
Standard Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products (Includes all amendments And changes 2/22/2021).
Automaticky preložený názov:
Štandardná skúšobná metóda pre získanie Tlaková dizajn Základ pre termoplastické materiály potrubia alebo tlaku dizajn základ pre termoplastické rúrkových výrobkov
NORMA vydaná dňa 15.11.2013
Označenie normy: ASTM D2837-13e1
Poznámka: NEPLATNÁ
Dátum vydania normy: 15.11.2013
Kód tovaru: NS-21653
Počet strán: 16
Približná hmotnosť: 48 g (0.11 libier)
Krajina: Americká technická norma
Kategória: Technické normy ASTM
Keywords:
ICS Number Code 83.140.30 (Plastic pipes and fittings for non-fluid use)
Significance and Use | ||||||||||||
4.1 The procedure for estimating long-term hydrostatic strength or pressure-strength is essentially an extrapolation with respect to time of a stress-time or pressure-time regression line based on data obtained in accordance with Test Method D1598. Stress or pressure-failure time plots are obtained for the selected temperature and environment: the extrapolation is made in such a manner that the long-term hydrostatic strength or pressure strengthis estimated for these conditions. 4.2 The hydrostatic or pressure
design basis is determined by considering the following items and
evaluating them in accordance with 5.4.
4.2.1 Long-term hydrostatic strength or hydrostatic pressure-strength at 100 000 h, 4.2.2 Long-term hydrostatic strength or hydrostatic pressure-strength at 50 years, and 4.2.3 Stress that will give 5 % expansion at 100 000 h. 4.2.4 The intent is to make allowance for the basic stress-strain characteristics of the material, as they relate to time. 4.3 Results obtained at one temperature cannot, with any certainty, be used to estimate values for other temperatures. Therefore, it is essential that hydrostatic or pressure design bases be determined for each specific kind and type of plastic compound and each temperature. Estimates of long-term strengths of materials can be made for a specific temperature provided that calculated values, based on experimental data, are available for temperatures both above and below the temperature of interest. 4.4 Hydrostatic design stresses are obtained by multiplying the hydrostatic design basis values by a service (design) factor. 4.5 Pressure ratings for pipe may be calculated from the hydrostatic design stress (HDS) value for the specific material used to make the pipe, and its dimensions using the equations in 3.1.11. 4.5.1 Pressure ratings for multilayer pipe may be calculated by multiplying the pressure design basis (PDB) by the appropriate design factor (DF). |
||||||||||||
1. Scope | ||||||||||||
1.1 This test method describes two essentially equivalent procedures: one for obtaining a long-term hydrostatic strength category based on stress, referred to herein as the hydrostatic design basis (HDB); and the other for obtaining a long-term hydrostatic strength category based on pressure, referred to herein as the pressure design basis (PDB). The HDB is based on the material's long-term hydrostatic strength (LTHS),and the PDB is based on the product's long-term hydrostatic pressure-strength (LTHSP). The HDB is a material property and is obtained by evaluating stress rupture data derived from testing pipe made from the subject material. The PDB is a product specific property that reflects not only the properties of the material(s) from which the product is made, but also the influence on product strength by product design, geometry, and dimensions and by the specific method of manufacture. The PDB is obtained by evaluating pressure rupture data. The LTHS is determined by analyzing stress versus time-to-rupture (that is, stress-rupture) test data that cover a testing period of not less than 10 000 h and that are derived from sustained pressure testing of pipe made from the subject material. The data are analyzed by linear regression to yield a best-fit log-stress versus log time-to-fail straight-line equation. Using this equation, the material's mean strength at the 100 000-h intercept (LTHS) is determined by extrapolation. The resultant value of the LTHS determines the HDB strength category to which the material is assigned. The LTHS P is similarly determined except that the determination is based on pressure versus time data that are derived from a particular product. The categorized value of the LTHS1.2 Unless the experimentally obtained data approximate a straight line, when calculated using log-log coordinates, it is not possible to assign an HDB/PDB to the material. Data that exhibit high scatter or a “knee” (a downward shift, resulting in a subsequently steeper stress-rupture slope than indicated by the earlier data) but which meet the requirements of this test method tend to give a lower forecast of LTHS/LTHS1.3 A fundamental premise of this test method is that when the experimental data define a straight-line relationship in accordance with this test method's requirements, this straight line may be assumed to continue beyond the experimental period, through at least 100 000 h (the time intercept at which the material's LTHS/LTHSP is determined). In the case of polyethylene piping materials, this test method includes a supplemental requirement for the “validating” of this assumption. No such validation requirements are included for other materials (see Note 1). Therefore, in all these other cases, it is up to the user of this test method to determine based on outside information whether this test method is satisfactory for the forecasting of a material's LTHS/LTHS P for each particular combination of internal/external environments and temperature. 1.4 The experimental procedure to
obtain individual data points shall be as described in Test Method
D1598, which forms a part of this test method. When any part of
this test method is not in agreement with Test Method D1598, the
provisions of this test method shall prevail.
1.5 General references are included at the end of this test method. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.7 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only and are not considered the standard.
|
|
Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers (Includes all amendments and changes 10/17/2023).
|
|
Standard Test Method for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure
|
PPI TR-4
|
PPI Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe
|
PPI TR-3
|
Policies and Procedures for Developing Hydrostatic Design Basis (HDB), Hydrostatic Design Stresses (HDS), Pressure Design Basis (PDB), Strength Design Basis (SDB), and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe
|
ISO 9080
|
Plastic Piping and Ducting Systems, Determination of Long-Term Hydrostatic Strength of Thermoplastics Materials in Pipe Form by Extrapolation Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org..
|
|
Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications |
Historická
1.5.2013
Historická
1.8.2012
Historická
1.5.2011
Historická
1.11.2012
Historická
1.11.2013
Posledná aktualizácia: 2024-12-28 (Počet položiek: 2 217 261)
© Copyright 2024 NORMSERVIS s.r.o.